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Light is shed upon Eulerian Monte Carlo methods and their application to the simulation of turbulent
reactive flows. A rapid decorrelating velocity-field model is used to derive stochastic partial differential equa-
tions �SPDE’s� stochastically equivalent to the modeled one-point joint probability density function of turbu-
lent reactive scalars. Those SPDE’s are shown to be hyperbolic, advection-reaction equations. They are dealt
with in a generalized sense, so that discontinuities in the scalar fields can be treated. A numerical analysis is
proposed and numerical tests are carried out. In particular, a comparison with the Lagrangian Monte Carlo
method is performed.
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I. INTRODUCTION

In turbulent flames, phenomena of interest, such as pol-
lutant production, soot formation, or extinctions and igni-
tions, mainly arise from a conjunction of rare physical events
�peak temperature, weak mixing conditions, etc.� and finite-
rate chemistry effects. Predicting these phenomena thus re-
quires a precise knowledge of the one-point statistics of the
species concentrations and temperature, as well as an accu-
rate description of chemical reactions. Regarding both as-
pects, the one-point joint composition probability function
�PDF� appears as a relevant tool: it transports the detailed
one-point statistical information of the turbulent scalars and
allows chemical source terms to be treated exactly �1,2�.

These advantages are nonetheless counterbalanced by a
severe numerical constraint: the composition PDF possesses
a potentially high number of dimensions, which induces
heavy computational costs. In particular, the finite methods
traditionally employed in computational fluid dynamics
�CFD� cannot be used, as their cost increases exponentially
with dimensionality. Monte Carlo methods, on the other
hand, yield a linearly growing effort and are more adapted to
solve PDF equations.

So far, in the field of turbulent combustion, Monte Carlo
methods have mostly been considered under their Lagrang-
ian form, following the impulsion given by the seminal work
of Pope �2�. However, as will be discussed in Sec. VII, La-
grangian Monte Carlo �LMC� methods yield inherent diffi-
culties for controlling statistical convergence and also induce
complex couplings with RANS or LES solvers. These results
appear as strong incentives to use Eulerian Monte Carlo
�EMC� methods. EMC methods are based on stochastic Eu-
lerian fields, which evolve from prescribed stochastic partial
differential equations �SPDE’s� stochastically equivalent to
the PDF equation. In practice, a large set of stochastic fields
is evolved and statistics are recovered through weighted
sums upon these different realizations. With the notable ex-
ception of Valiño’s work �3�, also discussed in Sec. VII,
EMC methods have scarcely been used in the field of turbu-
lent combustion.

In this article, we propose a path to derive SPDE’s allow-
ing us to compute a modeled one-point joint composition
PDF. This approach has its foundation in the rapidly decor-
relating velocity field model first proposed by Kraichnan �4�
and Kazantsev �5�. The Kraichnan-Kazantsev �Kr-Ka� model
describes the advection of a scalar by a solenoidal white-in-
time Gaussian velocity field and leads to a Fokker-Planck
composition PDF equation with a diffusion term in physical
space. The Kr-Ka model usually serves as a tool for the
theoretical analysis of turbulent scalar fields in homogeneous
turbulence �6,7�.

The Kr-Ka model was used earlier by Eyink and Xin �8�
to model nonpremixed isothermal turbulent flames. The start-
ing point of Eyink and Xin �8� is a system of semilinear
hyperbolic SPDE’s, modeling the evolution of turbulent re-
active scalars in the absence of molecular diffusion and in a
spatially Lipschitz, incompressible random flow. From this
system of SPDE’s, Eyink and Xin �8� then derive and ana-
lyze closed equations for one-point and multipoint composi-
tion PDF’s. In this article, we solve, in some sense, an in-
verse problem. The closed Fokker-Planck equation for the
one-point joint composition PDF, as used in the turbulent
combustion community �2�, is supposed to be given. Con-
trary to �8�, our objective is then to derive SPDE’s stochas-
tically equivalent to this given Fokker-Planck equation. In
addition, the equivalence between the SPDE’s and PDF must
now be established for the general case of compressible, in-
homogeneous, low-Mach-number turbulent flames, with mo-
lecular diffusion effects. It has to be noted that molecular
diffusion cannot be neglected for modeling turbulent reactive
flows. In fact, combustion can only occur after molecular
mixing has taken place.

The SPDE’s that we derive are semilinear hyperbolic
equations, advected by a smooth in space, white-in-time ve-
locity field. Spatial smoothness of the velocity field proceeds
from the fact that the impact of a white-in-time velocity field
on the one-point composition PDF is characterized only by
the turbulent diffusivity tensor �6,7�. Further details of the
spatial structure of a white-in-time velocity field do not in-
fluence this one-point composition PDF �this is not the case
for multipoint PDF’s �6,8��. As the turbulent diffusivity ten-
sor is spatially Lipschitz, the stochastic velocity that we de-
rive is also spatially Lipschitz. This fact essentially simplifies*Electronic address: Vladimir.Sabelnikov@onera.fr
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the derivation and proof of the equivalence between the SP-
DE’s and PDF.

In the derived SPDE’s, the stochastic advection term is
interpreted in the Stratonovitch sense: as will be shown, only
in this case can the SPDE’s be considered as advection-
reaction equations. These SPDE’s are also treated in a gen-
eralized sense. Indeed, discontinuous stochastic scalar fields
are likely to appear due to the influence of boundary condi-
tions, even for continuous and differentiable initial solutions.
Finally, due to their hyperbolicity, the SPDE’s are shown to
be intimately connected to Lagrangian methods through the
notion of stochastic characteristic.

The remainder of the paper is organized as follows. First,
a modeled equation for the composition one-point PDF is
given. Then, SPDE’s allowing one to compute this PDF are
derived. The connection of these SPDE’s with stochastic or-
dinary differential equations �SODE’s� is precised through
the notion of stochastic characteristics. A simple example is
proposed to illustrate this connection, as well as the basic
features of the SPDE’s. Then, a numerical analysis is carried
out and numerical tests are performed to check orders of
accuracy and statistical convergence rates. Finally, a discus-
sion of the relative merits of the LMC and EMC approaches
is proposed.

II. PDF EQUATION OF A TURBULENT REACTIVE
SCALAR

Without loss of generality, the one-point composition
PDF—and the subsequent derivation of the SPDE’s allowing
to compute it—is detailed for only one turbulent reactive
scalar c. This scalar evolves according to an advection-
diffusion-reaction equation

�c

�t
+ Uj

�c

�xj
= −

1

�

�Jj

�xj
+ S�c� . �1�

The left-hand side describes the advection of the scalar field
by the turbulent velocity U while the two terms on the right-
hand side, respectively, describe the effects of molecular dif-
fusion and chemical reaction: Jj represents the molecular dif-
fusion flux and S�c� is a chemical source term, depending on
the scalar value.

For variable density flows with low Mach numbers, work-
ing with density-weighted �Favre� statistics is a widespread
technique. If pc is the one-point PDF of the scalar c, then the
Favre one-point PDF fc is defined by

���fc�c;x,t� = ��c�pc�c;x,t� , �2�

where � is the density. The Reynolds average of a quantity Q
is noted �Q�. Its Favre average and Favre fluctuation are,

respectively, denoted Q̃ and Q�=Q− Q̃. From the definition
of the Favre PDF �Eq. �2��, we have the well-known relation

Q̃= ��Q� / ���
The low-Mach-number assumption is here necessary for

expressing the density as a function of the scalar concentra-
tion �=��c�. In this work, it will be supposed that this as-
sumption is verified.

Using standard techniques �2�, the following transport
equation is obtained for the Favre PDF fc:

�

�t
����fc� +

�

�xj
����Ũj fc� = −

�

�xj
�����uj��c�fc�

−
�

�c
����	−

1

�

�Jj

�xj
�c
 fc�

−
�

�c
����S�c�fc� , �3�

where �·�c� denotes averages conditioned on the scalar value.
The left-hand side of this equation represents the advec-

tion of fc by the Favre-averaged velocity Ũ. The first term on
the right-hand side describes the effects of turbulent advec-

tion by the fluctuating velocity u�=U− Ũ, the second the
effects of molecular mixing, and the third the effects of
chemical reaction. While chemical reactions are treated ex-
actly, the effects of molecular mixing, and turbulent advec-
tion appear in an unclosed form and require modeling.

The conditional average of the divergence of the scalar
flux, �−�1/���Jj /�xj �c�, is usually called the micromixing
term and in the general case is modeled by an operator noted
M. Two of the most frequently used models, which will be
considered in this work, are the IEM model �9�

Mfc = − ��c��c − c̃�fc �4�

and the Langevin model �10,11�

Mfc = − a��c��c − c̃�fc −
�

�c
�b��c�c�1 − c�fc� ,

a = 1 + d0
c̃ − c2̃

�M
2 , b = d0

�2

�M
2 . �5�

In these equations, �2 is the scalar variance,

�2 = c2̃ − c̃2, �6�

and �M
2 is the maximum value of the scalar variance:

�M
2 = c̃�1 − c̃� , �7�

��c� is the mean mixing frequency and d0 is a positive con-
stant controlling the rate of PDF relaxation. If d0=0, then the
Langevin model transforms into the IEM model.

The IEM and Langevin models can be considered as vari-
ants of the mean-field approximation, since the two-point
statistical information needed for �−�1/���Jj /�xj �C� is mod-

eled using the one-point PDF and its first moments �c̃ ,c2̃�.
The explicit formulation of the IEM and Langevin models
will only be used in the applications and the general form M
will be kept unless explicitly noted otherwise.

As for turbulent advection, it is usually modeled with an
isotropic gradient diffusion assumption �2�:

�uj��c�fc = − �T
�fc

�xj
, �8�

where �T is a turbulent diffusion coefficient.
As a result, the following modeled transport equation is

obtained for fc, the Favre one-point PDF of c:
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�

�t
����fc� +

�

�xj
����Ũjfc� =

�

�xj
�����T

�fc

�xj
� −

�

�c
����Mfc�

−
�

�c
����S�c�fc� . �9�

In this equation, the turbulent diffusivity �T and the mean
mixing frequency ��c�, as well as the Favre-averaged veloc-

ity Ũ, are supposed to be known. For instance, they can be
computed from a RANS solver �12�. As a consequence, this
equation is closed. Note that if Mfc does not include deriva-
tives in composition space �as with the IEM model�, Eq. �9�
is parabolic in space and hyperbolic in composition space, so
that it is a degenerate hypoelliptic Fokker-Planck equation.

We note here that the PDF equation derived in �8� corre-
sponds to a particular case of Eq. �9�, with constant density

�, zero mean advection Ũ=0, constant turbulent diffusion
�T, and no micromixing M=0.

III. DERIVATION OF THE SPDE’s

Our main objective here is to derive an SPDE stochasti-
cally equivalent to the PDF equation �9�. This SPDE governs
the evolution of a stochastic scalar field hereafter denoted �.

In devising such an SPDE, the major difficulty does not
stem from the influence of mean advection, chemical reac-
tions, or micromixing. Mean advection and chemical reac-
tions appear under an exact form in the PDF equation �9� and
will also be present under an exact form in the stochastic
field equation. As for micromixing, a stochastic process
yielding an operator M in the PDF equation �9� has already
been devised in the frame of LMC methods and can be
readily applied to our case �see Appendix A�. This process is
further denoted M�� ;x , t� and is added as a source term in
the stochastic field equation. For the IEM model, M is deter-
ministic and is defined by �9�

M��;x,t� = − ��c��� − �̃� . �10�

For the Langevin model, M is stochastic and is defined by
�10,11�

M��;x,t� = − a��c��� − �̃� + �2b��c���1 − �� Ẇ , �11�

where W�t� is a standard Wiener process and Ẇ is its time
derivative �white noise�. In this expression, the stochastic
product is interpreted with the Ito interpretation �see �13� and
below for further information on the Ito interpretation�. The
absence of symbol in the stochastic product denotes this in-
terpretation.

The last and main question that now remains to be an-
swered is how to model the turbulent advection in the scalar
field SPDE, so as to get the diffusion term in the PDF equa-
tion.

To try and figure out this problem, the equation for the
stochastic field � is first written in the following form:

��

�t
+ uj

��

�xj
= F��;x,t� , �12�

where F�� ;x , t�=−Ũj �� /�xj +M�� ;x , t�+S��� accounts for
mean advection, micromixing, and chemical reaction as ex-
plained above. In Eq. �12�, u is a stochastic velocity which
needs to be specified. It does not directly correspond to the
Favre fluctuating velocity u� and in particular does not nec-
essarily respect the continuity constraint and does not neces-
sarily average to zero. Only two features are of interest for
our purpose. The first one is that u models a velocity and
thus should preserve the physical property of advection. The
second one is that u should yield, in the one-point PDF equa-
tion derived from Eq. �12�, the diffusion term present in Eq.
�9�.

Concerning this second point, it is known, from the works
of Kraichnan �4� and Kazantsev �5� or from those of Eyink
and Xin �8�, that a diffusion term in the PDF equation can be
obtained with a white-in-time Gaussian velocity field. How-
ever, these results were obtained under the assumption of a
homogeneous and solenoidal stochastic velocity field. In our
case, the gradient diffusion coefficient is variable in space,
and, besides, the density is variable. Consequently, the as-
sumption of homogeneous and solenoidal stochastic velocity
fields is not valid: we need to modify the Kr-Ka model to
account for the specificities of our case.

In addition, we also consider the use of the Kr-Ka model
from a different angle, compared to �4,5,8�. Our goal is to
compute one-point PDF’s, so that, as will be shown, we only
need to know the turbulent diffusion coefficient. The details
of the spatial structure of the white-in-time Gaussian velocity
field are of no importance to our purpose, as opposed to
�4,5,8�.

The key idea of our approach consists in modeling u as

u = ud + ug, �13�

where ud is a deterministic drift component and ug is a
Gaussian random component of the velocity. Then, in Eq.
�12�, we let the correlation time of ug tend to zero. When
taking this zero-correlation time limit, several limit equations
with different interpretations �Ito, Stratonovitch, etc.� can be
obtained �see �13� for more details on Ito and Stratonovitch
interpretations�. However, only one limit equation preserves
the physical property of advection: the one that is obtained in
the same way Stratonovitch did to give meaning to his sto-
chastic integral �13�.

As a result, we obtain the following SPDE with Stratono-
vitch interpretation for the stochastic advection term:

��

�t
+ uj

d ��

�xj
+ uj

g �
��

�xj
= F��,x� . �14�

The symbol � is used to denote the Stratonovitch interpreta-
tion of the stochastic product. The velocity ug is now � cor-
related in time.

It is essential to note that this equation is a hyperbolic
advection-reaction equation. The Stratonovitch calculus is
identical to the classical one, so that uj

g ��� /�xj has the same
physical advection properties as if ug was deterministic. In
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particular, if M =0 and S=0, then the stochastic field � is
simply advected alongside a stochastic path. Except for the
influence of boundary conditions, initial profiles are strictly
preserved and do not undergo any kind of diffusion process.
This advection properties would be lost if an Ito interpreta-
tion was used �see Sec. V�.

The last step in the derivation of an equation for the sto-
chastic field consists in precising ud and ug so that the PDF
of � is identical to fc. This can be achieved by expressing the
PDF equation of the stochastic scalar field � and by identi-
fying it with the PDF equation �9� of c. This procedure is
detailed in Appendix A and yields the following constraints
on ud and ug:

1

2
�ui

g�x,t�uj
g�x,t��dt = �T�ij , �15�

uj
d = −

1

2
	 �ui

g

�xi
�x,t�uj

g�x,t�
dt −
1

���
����
�xj

�T. �16�

The constraint equations �15� and �16� do not determine
uniquely the velocities ud and ug. Concerning the first con-
straint �15�, our choice is to use the simplest possible
solution—i.e., an isotropic stochastic velocity:

uj
g = �2�TẆj , �17�

where the Wj are independent standard Brownian processes

and the Ẇj are their time derivatives. The Brownian pro-
cesses Wj are also chosen independent from the Brownian
process W used in the Langevin model. From this expression
and from the constraint equation �16�, we deduce, for the
drift velocity,

uj
d = −

1

2

��T

�xj
−

1

���
����
�xj

�T. �18�

We emphasize that the stochastic velocity field ug is only
dependent on the turbulent diffusivity �T. As �T is Lipschitz
continuous in space, the stochastic velocity field is also Lip-
schitz continuous in space. This conclusion is essential for
the derivation presented in Appendix A.

Finally, the following SPDE is obtained:

��

�t
+ �Ũj −

1

2

��T

�xj
−

1

���
����
�xj

�T� ��

�xj
+ �2�TẆj �

��

�xj

= M��;x,t� + S��� . �19�

This equation is a hyperbolic advection-reaction equation,
stochastically equivalent to the PDF equation �9�. In its deri-
vation, no hypothesis on the smoothness and differentiability
of the stochastic scalar fields was required so that it has a
generalized sense. Besides, the velocity advecting the sto-
chastic field is formed by mean quantities, so that its length
scale is also that of a mean quantity. This, however, does not
imply that the scalar field also evolves on a mean length
scale. Equation �19� is also driven by a chemical source term
which, in practice, possesses stiff gradients in composition
space. These in turn can generate strong gradients in physical
space for the stochastic fields �see example in Sec. V C�.

The stochastic advection term in Eq. �19� is expressed
with a Stratonovitch interpretation. It can also be recast with
an Ito interpretation �13� �see Appendix B�:

��

�t
+ Ũj

��

�xj
+ �2�TẆj

��

�xj
−

1

���
�

�xj
�����T

��

�xj
�

= M��;x,t� + S��� . �20�

This equation was first found by Valiño �3�, but under a
restrictive hypothesis on the smoothness of the scalar field
�see Sec. VII�. It was also considered in �3� as a parabolic
SPDE. As will be clarified in Sec. V, the presence of a
second-order spatial operator in Eq. �20� is deceptive. Be-
cause of the stochastic term with Ito interpretation, it does
not act as a diffusion term but, instead, contributes with the
stochastic term to the advection of the scalar field. As Eq.
�19�, Eq. �20� is an advection-reaction equation. For in-
stance, in the case of no molecular mixing or chemical reac-
tion, the scalar � is constant alongside Brownian paths.

IV. STOCHASTIC CHARACTERISTICS: A BRIDGE
BETWEEN LAGRANGIAN AND EULERIAN MONTE

CARLO METHODS

In Sec. III, an SPDE �Eq. �19�� stochastically equivalent
to the Fokker-Planck PDF equation �9� has been derived.
This SPDE can be solved as such to compute the evolution
of a large set of Eulerian stochastic fields, from which the
PDF �9� is eventually reconstructed. This procedure yields,
by definition, a Eulerian Monte Carlo method.

There also exists another way of exploiting Eq. �19�. In-
deed, as shown in Sec. III, SPDE �19� is a first-order hyper-
bolic equation. Therefore, it possesses characteristic curves
along which it reduces to an SODE �compatibility equation�
�14�. As a result, Eq. �19� can also be solved by the method
of characteristics—that is to say, by solving the set of
SODE’s defining its characteristic curves and its compatibil-
ity equation. This procedure yields, in turn, a Lagrangian
Monte Carlo method, different from the one introduced in �2�
�see Sec. IV B�.

A. Notion of a stochastic characteristic

The correspondence between characteristics and hyper-
bolic equations is straightforward for deterministic PDE’s,
and it can also be intuitively extended to hyperbolic SPDE’s
as long as they involve velocities with nonzero correlation
times. However, for SPDE’s with white-in-time velocities, as
in our case, the notion of characteristic needs to be precised.

SPDE �19� has been derived in Sec. III by considering the
zero-correlation time limit in the Stratonovitch sense of the
stochastic advection term in Eq. �12�. With all its term ex-
panded, Eq. �12� can be rewritten as

��

�t
+ Ũj

��

�xj
+ uj

��

�xj
= M��;x,t� + S��� . �21�

In Eq. �21�, the zero-correlation time limit of the random
velocity u is not yet taken. As a result, Eq. �21� is equivalent
to the following characteristic system:
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d�+�t� = �M„�+�t�;x+�t�,t… + S„�+�t�…�dt , �22�

dxj
+�t� = Ũjdt + ujdt . �23�

The notation q+�t� is hereafter used to denote the value of a
quantity q taken along the characteristic path x+�t�. For in-
stance, we write �+�t� for �(t ,x+�t�). Provided that initial and
boundary conditions are the same, both SPDE �21� and
SODE’s �22� and �23� share the same solution �	, where the
subscript denotes the dependence of the solution on 	, the
correlation time of u.

When 	 tends to zero with respect to other characteristic
time scales, several limit equations with different interpreta-
tions �Ito, Stratonovitch, etc.� can be obtained, respectively,
from SPDE �21� and from SODE’s �22� and �23�. Then, the
limit SPDE and the limit set of SODE’s do not necessarily
possess the same solution and cannot a priori be considered
as equivalent.

However, in the Stratonovitch sense, the limit SPDE of
Eq. �21� can schematically be defined as the limit equation
which solution is �0—i.e., the limit when 	→0 of �	. As �	

and thus �0 are the same for Eqs. �22� and �23�, this defini-
tion also holds for the limit SODE’s obtained from Eqs. �22�
and �23�, in the Stratonovitch sense.

As a consequence, the zero-correlation time limits in the
Stratonovitch sense of SPDE �21� and SODE’s �22� and �23�
are equivalent: both limit equations share the same solution
�0. Thus, the notion of a characteristic can also be extended
intuitively to the case of hyperbolic SPDE’s with white-in-
time velocities, provided that the Stratonovitch interpretation
is used in both the SPDE and its characteristics.

We recall here that this discussion deals with the zero-
correlation time limit of the advection process and is inde-
pendent of the specification of the micromixing model. By
construction, the Langevin model �11� uses the Ito interpre-
tation, and this interpretation is kept on the right-hand side of
the hyperbolic SPDE and in its compatibility equation.

In particular, the characteristics of SPDE �19� are given
by

d�+�t� = �M„�+�t�;x,t… + S„�+�t�…�dt , �24�

dxj
+�t� = �Ũj −

1

2

��T

�xj
−

1

���
����
�xj

�T�dt + �2�T � dWj�t� .

�25�

SODE’s �24� and �25� can be viewed as describing the La-
grangian trajectories of stochastic particles in physical and
composition space. They can serve as a basis to compute the
Lagrangian statistics of the scalar field �.

SODE �25� with Stratonovitch interpretation can be recast
in an SODE with Ito interpretation. System �24� and �25�
then becomes

d�+�t� = �M„�+�t�;x,t… + S„�+�t�…�dt , �26�

dxj
+�t� = �Ũj −

1

���
����
�xj

�T�dt + �2�T dWj�t� . �27�

As opposed to SODE’s �24� and �25� and SPDE �19� with
Stratonovitch interpretation, there is no direct connection be-
tween SODE’s �26� and �27� and �20� with Ito interpretation:
SODE’s �26� and �27� cannot be viewed as characteristics of
the “parabolic” SPDE �20�.

B. Correspondence between Lagrangian and Eulerian
descriptions

SODE’s �24� and �25� are equivalent to SPDE �19�, but
yield a purely Lagrangian description of the statistics of the
scalar field �. If one is interested in computing Eulerian sta-
tistics, a supplementary information must be introduced.

In a Lagrangian framework, the evolution of the stochas-
tic field is computed along the trajectories of a set of par-
ticles. Each trajectory is characterized by the initial particle
position, denoted x+�0�=�, so that the computed positions
and scalar values are functional of 
: x+�t�=x+�t ��� and
�+�t�=�+�t ���. A Eulerian description, on the other hand, re-
quires the scalar values carried by the particles to be explic-
itly known as functionals of the current particle positions.
Thus, to make the Lagrangian-Eulerian connection complete,
one needs to know how to transform the initial positions of
the particles to their current positions or, in other words, to
express � as ��x+�. This transformation is given by the Jaco-
bian j+�t ��� of the current position x+�t� of the stochastic
particles with respect to there initial position:

j+�t��� = Det�jik�t���� , �28�

with

jik =
�xi

+�t���
�
k

.

As shown in Appendix C, the relation between the Eule-
rian PDF of �, fE�� ;x , t�, and the Lagrangian joint PDF of
��t �
� and particle position x�t �
�, fL�� ,x ; t �
� is given by

 fL��,x;t�
�d
 = 	 1

j
��
 fE��;x,t� . �29�

Thus, to recover the Eulerian PDF from a set of Lagrang-
ian stochastic particles, it is necessary to know the Jacobian
j+. Except for the particular case of particles advected by an
isovolume �divergence-free� velocity field, for which the
Jacobian is equal to 1, the evolution of j+ is not trivial. For
Eq. �25�, this evolution is given by

dj+ = j+div�Ũ + ud + ug�dt = j+� �

�xk
�Ũk −

1

2

��T

�xk

−
1

���
����
�xk

�T�dt +
�

�xk
��2�T� � dWk� . �30�

ud and ug are synthetic velocity fields and their divergences
are not linked with the evolution of density. For instance,
even in the case of constant density, div�ũ+ud+ug� is not
zero, so that j+ cannot be taken equal to 1. As a consequence,
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in the general case, no simplification can be brought to Eq.
�30�. It is thus necessary to solve Eq. �30� alongside with
SODE’s �24� and �25� in order to compute the Eulerian PDF
�9�.

The Lagrangian approach described here differs from the
traditional one introduced in �2�. This last approach can be
viewed as a finite pointset method �15� discretizing a sto-
chastic Eulerian PDF equation written in a conservative
form, and equivalent to Eq. �9�. The solution of the stochas-
tically equivalent PDF equation is looked for in the follow-
ing form:

��� f̄Np
�c;x,t� = �m�

k=1

Np

�„x̄k�t� − x…�„c̄k�t� − c… , �31�

where Np is a number of stochastic particles and �m is a
mass carried by each particle. Then, by introducing this ex-
pression into Eq. �9� and after several manipulations, one
obtains the SODE’s with Ito interpretation �2�:

dc̄�t� = �M„c̄�t�; x̄�t�,t… + S„c̄�t�…�dt , �32�

dx̄j�t� = �Ũj +
1

���
�����T

�xj
�dt + �2�T dWj�t� . �33�

The main advantage of this description is that it avoids in-
troducing an equation for the Jacobian. However, the notion
of stochastic characteristic is lost. SODE’s �32� and �33� can-
not be interpreted any longer as defining the trajectories of
Lagrangian particles having statistics equivalent to the PDF
�9�. We note in particular that SODE’s �32� and �33� are also
different from SODE’s �26� and �27� obtained through the
notion of stochastic characteristic.

V. ILLUSTRATION OF THE PROPERTIES OF
HYPERBOLIC ADVECTION-REACTION SPDE’s

The purpose of this section is to try and clarify some of
the properties of the hyperbolic advection-reaction equation
�19�. To this end, the following simplifications are intro-
duced: a one-dimensional domain is considered and the den-
sity � is chosen constant, as well as the turbulent diffusion
coefficient �T=�. The corresponding abridged version of Eq.
�9� is then given by

�fc

�t
= �

�2fc

�x2 −
�

�c
�Mfc + S�c�fc� . �34�

Four different aspects of Eq. �19� are illustrated. The first
example aims at gaining more insight into the connection
between PDF equations and hyperbolic SPDE’s and, more
generally, at illustrating the advecting properties of hyper-
bolic SPDE’s. The second case discovers the impact of
boundary conditions on the regularity of the solutions of hy-
perbolic SPDE’s. In the third example, the influence of a stiff
chemical source term is illustrated. Finally, the last example
describes the effects of micromixing on the regularity of the
solutions of hyperbolic SPDE’s.

In the first two cases, only pure turbulent advection is
involved; i.e., there is no micromixing or reaction: M=0

and S�c�=0, so that Eq. �34� degenerates further to a diffu-
sion equation

�fc

�t
= �

�2fc

�x2 . �35�

In the first case, the physical domain is chosen unbounded,
while in the second, a finite domain is considered. In the
third case, micromixing is not included M=0, and a discon-
tinuous source term is introduced. This term aims at repro-
ducing the strong gradients of Arrhenius chemical source
terms in the case of extremely high activation energies. It is
defined by

Sa�c� = ��SM , if 0  c � ca,

SM , if ca  c � 1,

0 else,
� �36�

where SM, �, and ca are constants and ��1. Finally, in the
fourth example, the IEM micromixing model �Eq. �10�� is
considered, with a constant mixing frequency ��c�=�.

A. Pure turbulent advection, unbounded domain: Advecting
properties of hyperbolic SPDE’s

1. PDF equation and hyperbolic SPDE’s

In this section, a direct connection between PDF �35� and
an hyperbolic SPDE is exhibited. Let the initial condition of
Eq. �35� be given by

f�c;x,t = 0� = f0�c;x� . �37�

The solution of the parabolic equation �35� is then

f�c;x,t� = f0�c;x − y�
1

�4��t
e−y2/4�tdy . �38�

By definition, the function �1/�4��t�e−y2/4�t is the PDF of
the Brownian process y=�2�W �W is the standard Brownian
process�. Hence, the integral on the right-hand side of Eq.
�38� can be interpreted as the mean of f0(c ;x−�2�W�t�):

f�c;x,t� = �f0�c;x − �2�W��W, �39�

where �·�W denotes averaging over the Brownian process.

Now, one can identify the function f̂�c ;x , t�= f0(c ;x
−�2�W�t�) as a first integral of the first-order SODE’s:

dc = 0,

dx = �2�dW�t� . �40�

The term “first integral” means that f̂ is constant alongside
the trajectory given by the SODE’s �40�. As a result, know-
ing the initial condition f0 and the trajectories given by Eqs.
�40� allows one to compute the PDF f through Eq. �39�.

In the deterministic case, ODE’s similar to Eqs. �40� are
named characteristic curves of hyperbolic advection PDE’s.
In the stochastic case, it is logical to name the SODE’s �40�
stochastic characteristic curves of the following hyperbolic
advection SPDE:
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�c

�t
dt + �2�

�c

�x
� dW = 0. �41�

Equation �41� is the abridged version of Eq. �19�. As was
stated above, it describes the pure turbulent stochastic advec-
tion of the concentration field by the white in time velocity
field �2�dW.

The Stratonovitch interpretation, as explained in Sec. III,
arises from considering a limit of a short correlated velocity
field. This interpretation is essential: if one erroneously
chooses the Ito interpretation, then one gets, after averaging
Eq. �41� with Ito interpretation,

��c�
�t

= 0, �42�

since for the Ito interpretation ��2���c /�x� dW�=0. This re-
sult is incompatible with the scalar mean equation deduced
from the PDF equation �35�:

��c�
�t

= �
�2�c�
�x2 . �43�

With the Stratonovitch interpretation, this correlation is not
zero. Indeed, the Furutsu-Novikov formula �13� gives, for
the stochastic product,

	�2�
�c

�x
� dW
 = − �

�2�c�
�x2 . �44�

This in turn is compatible with the equation of the averaged
scalar Eq. �43�.

Equation �41� can be rewritten in Ito form, which corre-
sponds to the abridged version of Eq. �20�:

�c

�t
dt + �2�

�c

�x
dW − �

�2c

�x2dt = 0. �45�

This equation is a particular case of Eq. �B5� for � constant.
A simple—nonrigorous—way to understand the Ito trans-

formation is to add a deterministic term to the stochastic
advection term with Stratonovitch interpretation so that it
yields a zero correlation. The mean of the stochastic product
with Stratonovitch interpretation is given by the Furutsu-
Novikov formula �44�. By subtracting a diffusion term to the
Stratonovitch interpretation, one naturally obtains a stochas-
tic term with Ito interpretation:

�2�
�c

�x
dW = �2�

�c

�x
� dW − �

�2c

�x2dt . �46�

A more formal proof is given in Appendix B.

2. Advecting properties of SPDE’s (41) and (45)

The Stratonovitch interpretation preserves the classical
differential calculus �13�, so that Eq. �41� is an hyperbolic
advection equation as would be the case if the coefficient in
the advection term had a nonzero correlation time. The solu-
tion of Eq. �41� is thus simply given by

c�x,t� = c0„x − �2�W�t�… , �47�

where c0 is the initial condition of the stochastic field c.
Equation �47� is another way of expressing the fact that Eq.
�41� preserves the shape of the initial solution and advects it
along Brownian paths. In particular, even an initial discon-
tinuous profile such as the Heaviside function H�x� is trans-
ported without alteration.

This advecting property might seem paradoxical when
considering that Eq. �41� is equivalent to Eq. �45� with Ito
interpretation. Equation �45� has a second-order diffusion
term, so that it looks like a parabolic equation. However, the
term with Brownian noise is not an advection term, because
the Ito calculus does not have the same rules as the classical
differential calculus. In this case, as already mentioned, it is
the sum of the Brownian noise term and of the diffusionlike
term which is meaningful and which acts like an advection
term. And one can verify by direct use of the Ito formula �13�
that Eq. �47� is also a solution of Eq. �45�.

It can also be checked that the solution �47� yields correct
evolutions for the moments. For instance, with a Heaviside
initial condition c0�x�=H�x� and knowing that the PDF fW of
W is a centered Gaussian of variance t �fW�W�
= �1/�2�t�e−W2/2t�, one obtains, for the scalar mean,

�c��x,t� = 
−�

�

H�x − �2�W�fWdW =
1

2�1 + erf� x

2��t
�� .

�48�

This expression is also the one obtained directly from the
scalar mean equation �43�.

B. Pure turbulent advection, bounded domain: Impact of
boundary conditions

Let us consider now a bounded domain in order to illus-
trate the impact of boundary conditions on the solution of
Eq. �41�. The domain after proper normalization is �0, 1� and
the boundary conditions for the PDF fc are chosen to be fc
=��c� at x=0 and fc=��c−1� at x=1. This corresponds for
the stochastic field of Eq. �41� to the boundary conditions
c=0 at x=0 and c=1 at x=1. However, if the simultaneous
specification of two boundary conditions is necessary for the
diffusion equation of the PDF fc, it is not the same for the
stochastic field c�x , t�, due to the advective nature of Eq.
�41�. For instance, at x=0, the c=0 inflow condition is only
effective when dW is positive and it becomes an outflow
condition when dW is negative and reciprocally at x=1.

What might seem more surprising is that with any arbi-
trary initial conditions, the limit when t→� of the solution
of Eq. �41� can be shown to be a step whose position is
moved randomly by the Brownian motion in interval �0, 1�.
Thus, initial profiles, even continuous, are transformed into
discontinuous ones due to the influence of boundary condi-
tions. This process can be loosely explained as follows: when
dW is positive, part of the initial profile is advected beyond
the x=1 boundary. When dW becomes negative, this initial
information is lost, as it is replaced by the inflow value at
x=1 boundary. The same also happens at the x=0 boundary,
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where initial information is replaced by the inflow value at
x=0. This process is then repeated at both boundaries until
eventually, with probability 1, the initial information is lost
and only the information given by both boundaries remains.

The evolution described above can be formalized by in-
troducing two supplementary stochastic processes W+ and
W−:

W+�t� = max
s��0,t�

„
�2�W�s�,W�s� � 0… ,

W−�t� = − min
s��0,t�

„
�2�W�s�,W�s� � 0… . �49�

Without boundary conditions, W+ gives the maximum devia-
tion of the initial profile towards positive x and W− gives the
maximum deviation of the initial profile towards negative x.
When W+�1, W+ gives the maximum extent of the initial
profile that has crossed the x=1 limit. Identically, when W−

�1, W− gives the maximum extent of the initial profile that
has crossed the x=0 limit.

Now reintroducing boundary conditions, W+ gives the
length of the initial profile modified by the x=1 boundary,
while W− gives the one modified by the x=0 boundary. This
result is valid for times smaller than the time tS for which the
initial condition is converted into a step. This happens when
all the initial profile has crossed at least one of the bound-
aries. tS is given by

tS = min
s��0,+��

�s,W+�s� + W−�s� = 1� . �50�

With probability 1, tS is finite, as, for instance, �2�W will be
greater than 1 with probability 1. Then, for times t� tS, the
solution is given by

c�x,t� = CW„x − �2�W�t�… , �51�

with CW�x� = �c0�x� , W− � x � 1 − W+,

0, x � W−,

1, x � 1 − W+.
� �52�

Figure 1 illustrates some moments of the conversion be-
tween an initial linear profile and a step. This figure was
obtained from Eq. �51�. A time step �t=0.08 was chosen in
order to compute the processes W+ and W−.

C. Influence of chemical source terms

To illustrate the influence of a source term on the spatial
length scale of the scalar field, a source denoted S�c� is
added to Eq. �41�, solved on an unbounded domain:

�c

�t
dt + �2�

�c

�x
� dW = S�c�dt . �53�

The corresponding equation for the gradient �c of the scalar
is then given by

� � c

�t
dt + �2�

� � c

�x
� dW =

�S

�c
�c� � cdt . �54�

If, for the sake of simplicity, we exclude the possibility for
�c to be zero, we can rewrite Eq. �54� as

�

�t
�ln� � c��dt + �2�

�

�x
�ln� � c�� � dW =

�S

�c
�c�dt . �55�

From this equation, it can be seen that a positive gradient
in composition space of the source term will enhance the
gradient of the scalar field in physical space, while a negative
one will have the opposite effect.

It is also observed that a constant turbulent advection ve-
locity does not have any enhancement or attenuating effect
on the scalar gradient, but only transports it �this would not
be the case if � was varying in space�. In this regard, the Ito
formulation is once again deceptive. Indeed, with Ito inter-
pretation, SPDE �53� can be rewritten as

�c

�t
dt + �2�

�c

�x
dW = �

�2c

�x2dt + S�c�dt . �56�

From this formulation, one could have concluded hastily that
the second-order differential operator ��2c /�x2 could bal-
ance the influence of the source term. However, as explained
in the previous sections, this operator is part of the advection
process, along with the stochastic product �2���c /�x� dW,
and its effects cannot be analyzed independently from this
last term.

To illustrate these assertions, let us consider Eq. �53� with
the source term Sa�c� given by Eq. �36�. From Eqs. �53� and
�54�, it can be shown that the quantity �c /S�c� is preserved
along the characteristic path dx=�2� dW. Indeed, along a
characteristic path, we have

d��c

S
� =

1

S
d��c� − � c

dS

S2 =
1

S
�d��c� − � c

1

S

�S

�c
dc�

=
1

S
� �S

�c
� c − � c

1

S

�S

�c
S� = 0. �57�

Then, while c�1, the gradient of the scalar field �c is re-
lated to the initial gradient �c0 by

FIG. 1. Formation of discontinuities due to boundary
conditions.
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�c�x,t� =
Sa„c�x,t�…
Sa„c0�x*�…

� c0�x*� , �58�

where x*=x−�2�W. This equality is actually valid for any
source term which is not zero on the interval �0, 1�. From
this relation it is seen that, for c�ca and c0�ca, the gradient
of the scalar field is amplified by a factor 1 /��1.

Thus, due to the presence of a stiff chemical source term
in Eq. �19�, the length scale down to which the stochastic
field must be solved can become much smaller than the
length scale imposed by the sole velocity field. This picture,
however, does not account for the influence of micromixing,
which has the potentiality to counteract the effects of stiff
source terms.

D. Influence of micromixing on scalar discontinuities

In the example given in Sec. V A 2, it has been shown
that spatial discontinuities in the scalar field were likely to
appear because of boundary conditions. In this subsection,
the effect of micromixing on discontinuities is assessed. To
this end, the micromixing term given by the IEM model �10�
with a constant mixing frequency � is added to Eq. �41�:

�c

�t
dt + �2�

�c

�x
� dW = − ��c − �c��dt . �59�

This equation is solved on an unbounded domain and the
initial solution is chosen discontinuous: c0�x�=H�x�, where
H is the Heaviside function. The solution to this problem is
then given by

c�x,t� = H„x − �2�W�t�…e−�t + 
0

t

�e−��t−s��c�„x − �2��W�t�

− W�s��,s…ds , �60�

where �c� is given by Eq. �48�.
Thus, this example shows that the micromixing term does

not in general suppress discontinuities. However, it will de-
crease their amplitude and thus minimize their impact. This
conclusion is not altered by the presence of a stochastic term
in the micromixing model, as in the Langevin model �11�.

For instance, let us consider an unbounded scalar and the
following micromixing model, mimicking the Langevin
model:

M = − ��c − c̄� + bẆ , �61�

where b is a constant. interpretations. If instead of the mi-
cromixing term �10�, the term �61� is added to Eq. �41�, then
the evolution of the scalar field is given by

c�x,t� = H„x − �2�W�t�…e−�t + 
0

t

�e−��t−s��c�„x − �2��W�t�

− W�s��,s…ds �62�

+ 
0

t

e−��t−s� � dW�s� , �63�

where �c� is still given by Eq. �48�. Thus, the initial discon-
tinuity is still present and its intensity decreases as time in-
creases.

VI. NUMERICAL ASPECTS

A. Numerical scheme

1. Spatial and temporal discretizations

The numerical analysis focuses on the equation with Stra-
tonovitch interpretation, Eq. �19�. Its numerical integration is
considered in terms of weak convergence and accuracy. Due
to the advection properties of Eq. �19�, it might be interesting
to use semi-Lagrangian methods to solve it. However, only
fully Eulerian schemes will be considered hereafter.

Temporal integration is addressed by recasting Eq. �19� in
an SODE form; this allows the use of traditional SODE tech-
niques �13�. An explicit first-order scheme is chosen, with a
predictor-corrector procedure generalizing the Heun scheme
�16�.

As for spatial discretization, scalar fluxes are interpolated
with a second-order essentially nonoscillatory �ENO�
scheme and a decentered procedure is used for the advection
term. Decentering derivatives yields a correlation between
the white noise and the discretization error �17�. As a result,
despite the second-order interpolations, the resulting scheme
is only first order in space.

2. Boundary conditions

The issue of boundary conditions is also a crucial one and
will be dealt with more thoroughfully in future work. In this
article, boundary conditions with first-order accuracy are ap-
plied. It should be noted that a diffusion equation like the one
for the PDF requires boundary conditions to be specified on
all the domain frontiers, whereas a hyperbolic equation only
requires boundary conditions to be specified on certain parts
of the frontier.

Furthermore, the turbulent stochastic advection term of
Eq. �19� can change the specification of boundary conditions
in time. For instance, for the simplified case considered in
Sec. V, the boundaries alternatively become inflow bound-
aries, with a specified value of the stochastic field or outflow
boundaries, with a value of the stochastic field computed
from the interior of the domain.

B. Numerical tests

1. Description

The purpose of the numerical calculations described here-
after is to assess the tractability of the EMC method intro-
duced in the previous sections and also to check the statisti-
cal and spatial convergence of the numerical scheme
proposed in Sec. VI A. To this end, we consider a simplified
one-dimensional version of the scalar PDF equation �9�, with

constant density �=const and constant mean velocity Ũ
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=U0. The calculation is performed on a domain of length L.
As in �18�, we define dimensionless quantities, based on the
domain length and on a reference velocity U:

t* = tU/L, x* = x/L, U0
* = U0/U ,

M* = ML/U, �* = ��c�L/U ,

�* = �T/�UL�, S = S*L/U . �64�

In the remainder of this section, only dimensionless quanti-
ties will be considered. For the sake of clarity, the notation
with exponent � will be dropped. is considered.

The dimensionless PDF equation is then given by

�fc

�t
+ U0

�fc

�x
=

�

�x
��

�fc

�x
� −

�

�s
�Mfc + Sfc� . �65�

The computational domain �after normalization� �0, 1�
and the boundary conditions are at x=0, fc=��c� and at x
=1, fc=��c−1�. The initial condition is chosen to be fc

=��c−1�.
The simplified version of Eq. �19� corresponding to the

PDF equation �65� is

�c

�t
+ �U0 −

1

2

��

�x
� �c

�x
+ �2�Ẇ �

�c

�x
= M + S . �66�

The corresponding boundary conditions are c�t ,x=0�=0,

when Ẇ�0 and c�t ,x=1�=1 when Ẇ�0. The specification
of both boundaries at the same time is not possible due to the
hyperbolic nature of Eq. �66�. The initial condition corre-
sponding to the initial PDF is c0�t=0,x�=1.

Four tests are performed. In the first one, the impact of the
discontinuities described in Sec. V is assessed. In this first
case, Eq. �66� is solved with constant turbulent diffusion, no
micromixing, and no chemical source term: M =0, S=0, U0
=0, and �=�0, where �0 is a constant. To study statistical
convergence, a velocity U0=0 is chosen, while spatial con-
vergence is examined with mean velocity U0=1. The addi-
tion of a mean velocity sharpens the moment profiles and
requires a greater spatial accuracy from the numerical
scheme.

In the second test, the influence of micromixing on the
spatial and statistical convergences is evaluated. Compared
to the first test, the IEM micromixing model defined by Eq.
�10� is added. In this test, a constant mixing frequency is
chosen: �=const.

In the third test, � is chosen to be variable and the role of
the drift velocity �Eq. �18�� is analyzed. Compared to the
second test, the coefficient � is changed to

� = �0�1 − 14x2�1 − x�2� . �67�

In the last test, the properties of the EMC method in pres-
ence of a nonlinear source term are examined. The following
nonlinear Arrhenius source term, typical of exothermic reac-
tions taking place in combustion processes, is considered:

S = 21830c�1 − c�e−20/�1+3c�. �68�

Besides, two micromixing models are examined, the IEM
model �Eq. �10�� and the Langevin model �Eq. �11��. For
both models, the mixing frequency is chosen constant: �
=const.

Some of the cases described above correspond to the ones
examined in �3� and �18�. In agreement with those studies,
the nondimensionnalized �18� values �0=0.1 and �=20 are
chosen. When it is not zero, the value of U0 is chosen equal
to 1. In the Langevin model, the value of the constant d0 is
set to 1.

2. Numerical procedure

The numerical scheme described in Sec. VI A yields the
following discretization for SPDE �66�:

ci
n+1 = ci

n − �U0�t + �2��t
n�
ci+1/2

n+1/2 − ci−1/2
n+1/2

dx
+ M�ci

n+1/2��t

+ S�ci
n+1/2��t , �69�

where

cn+1/2 =
1

2
�c* + cn� , �70�

ci
* = ci

n − �U0�t + �2��t
n�
ci+1/2

n − ci−1/2
n

dx
+ M�ci

n��t

+ S�ci
n��t . �71�

The i indexes correspond to a regular mesh with Nc cells of
size �x. The n exponents correspond to the successive in-
stants t0+n�t, with �t constant. The values of c at cell in-
terfaces ci±1/2 are interpolated with an ENO procedure and
decentered. A cfl condition is enforced:

�t = cfl
�x2

U0�x + 2�
, �72�

where cfl�0.5 due to the presence of the ENO interpolant.

n is a stochastic noise. It is shown in �17� that a binomial
noise �equal to ±1 with equal probability� is sufficient to
ensure the precision of the numerical scheme as given in Sec.
VI A.

Equation �69� is solved for N stochastic fields �c�k� ,k
=1, . . . ,N� and with N independent noises 
�k�. The mean of
a function Q�c� is simply computed by

�Q�c��i
n =

1

N
�
k=1

N

Q�ci
n,�k�� . �73�

A convergence error is defined for stationary problems and
for each moment of c:

ep = �
i=1

Nc

��cp�i − �cp�ref�xi�� , �74�

where �cp�ref�xi� is a reference solution of the problem at
point xi. When the right-hand side of SPDE �66� is null �test
1�, an analytic solution exists and is used as the reference
solution. When the right-hand side of SPDE �66� is linear
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�tests 2 and 3�, an analytic solution also exists, but its ex-
pression is not directly used. It is sufficient and more practi-
cal for our purpose to solve the equations for the moments
with a finite-difference method. For the fourth test, the
source term is nonlinear, and no analytic solution can be
obtained. Instead, we use a finite-difference method to solve
the equation for the distribution function—i.e., the integral of
the PDF �65� with respect to c.

When not mentioned, the default values of Nc and N in
the following calculations are Nc=50 and N=100.

3. Influence of discontinuities on statistical and spatial
convergence

In Sec. V, it has been shown that discontinuities can be
created by the hyperbolic nature of the equations and the
influence of boundary conditions. In this first numerical test,
the impact of such discontinuities on the numerical statistical
and spatial convergence is assessed.

First, Eq. �66� is solved without a micromixing or chemi-
cal source term, with �=�0 and with U0=0. As shown in
Sec. V B, the solution of Eq. �66� then consists in a step
which position is random. This implies that, in theory, only
two values of the scalar field can be obtained: 0 and 1. In
other words, the PDF is made of two Dirac peaks located at
c=0 and c=1. The stationary solution of the PDF equation is
given by

fc�c;x� = �1 − �c����c� + �c���c − 1� ,

�c� = x . �75�

From Eqs. �75�, it follows that

�cp� = x, p = 1,2,3, . . . . �76�

Figure 2 shows several stochastic realizations computed
from Eq. �66� after statistical convergence is reached �the
default values of Nc and Np are taken�.

Due to numerical diffusion, the computed profiles are not
strictly steps, but present a continuous, even if sharp, varia-
tion between 0 and 1. As a consequence, new potential val-
ues are introduced by numerical diffusion, so that the PDF is
not made any longer of two Dirac peaks. Instead �see Fig. 3�,
it presents two peaks at c=0 and c=1, as well as a ground
value between 0 and 1. This additional component in the
PDF introduces a bias in the computation of the moments of
order greater than 1 and induces strong limitations on their
convergence. Figure 4 shows the statistical convergence of
moments of order p=1, . . . ,6. Due to symmetry reasons,
convergence of the mean is not affected and follows the N−1/2

theoretical law. However, convergence of higher-order mo-
ments is slowed down and rapidly stagnates. Figure 5 illus-
trates the effects of numerical diffusion on the computed
moments. It is seen that higher-order moments do not corre-
spond to the analytic solution.

To study spatial convergence, a velocity U0=1 is added. It
is observed in Fig. 6 that discontinuities also have a negative
effect on spatial convergence. The first-order precision of the
numerical scheme is lost. For the first and second moments,
the scheme appears as a 0.6 order, while for other moments,
there is no convergence at all.

Thus, this first test case exhibits the need to use numerical
methods capable of handling advection of discontinuous sca-
lar fields with as small a numerical diffusion as possible.
Indeed, the smearing of discontinuities yields a bias propor-
tional to the length on which the discontinuities are spread. It
must be stressed that the particular case under scrutiny is
unfavorable to EMC methods: the solution is only made of
discontinuities and puts forward any difficulty in computing
them. Such a case is actually not encountered in practical
calculations, in which one must at least account for the ad-
ditional effects of micromixing.

FIG. 2. Test 1: no micromixing �=0, no source term S=0, �
=0.1, U0=0. Stochastic fields at time t=10.

FIG. 3. Test 1: no micromixing �=0, no source term S=0, �
=0.1, U0=0. PDF at t=10 and x=0.51.
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4. Influence of micromixing on scalar discontinuities

In the second test case, the IEM micromixing model is
added to Eq. �66�, with �=20, while all parameters are kept
constant compared to the first test. A reference solution is
obtained for this problem by solving the moment equations
with a finite difference �FD� method. The equation for the
moment of order p is

��cp�
�t

+ U0
��cp�
�x

=
�

�x
��

��cp�
�x

� − p���cp� − �c��cp−1�� .

�77�

For solving this equation, one needs to know the moment of
order p−1. As a consequence, to compute �cp�, one has to
solve all moments of order n� p.

We first take U0=0 and examine how scalar-field discon-
tinuities are affected by micromixing. It can be seen in Fig. 7
that stochastic scalar profiles still present discontinuities
nearby the boundaries x=0 and x=1. It can be seen in Fig. 7
that these discontinuities are still numerically diffused. How-
ever, micromixing diminishes their amplitude and restrains
their influence close to boundaries. Besides, with the addi-
tion of micromixing, the solution does not depend only on an
accurate prediction of discontinuous profiles, but also on the
smooth evolution of the profiles on each side of the discon-
tinuity. As a result, statistical convergence is found to follow
the theoretical N−1/2 law, as seen in Fig. 8, and a good agree-
ment is found between analytical and computed mean pro-
files �Fig. 9�.

Similarly, spatial convergence is also recovered �see Fig.
10�. As in the previous section, this figure was obtained for
U0=1.

Thus, this second example shows that, thanks to the addi-
tional effects of micromixing, discontinuities might not be as
impairing as suggested by the first example. This, however,
does not alleviate the fact that discontinuities must be treated
correctly.

5. Influence of the spatial variations of the stochastic velocity

In case the stochastic velocity varies with space, it has
been shown in Sec. III that a deterministic drift velocity �Eq.

FIG. 4. Test 1: no micromixing �=0, no source term S=0, �
=0.1, U0=0. Statistical convergence of the moments: error ep

against the number of stochastic fields, N.

FIG. 5. Test 1: no micromixing �=0, no source term S=0, �
=0.1, U0=0. Comparison of the moments computed with the EMC
method against the analytic solution �Eq. �76��.

FIG. 6. Test 1: no micromixing �=0, no source term S=0, �
=0.1, U0=1. Spatial convergence: error ep against the number of
cells, Nc.
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�18�� had to be added. To analyze the influence of this drift
velocity on convergence, Eq. �41� is solved with � defined
by Eq. �67�, with U0=0 and all other parameters kept con-
stant in respect with the second test.

With this setting, it is observed �see Fig. 11� that the N−1/2

convergence rate is actually respected, which confirms the
derivation of the correction velocity. Figure 12 illustrates
some of the moments obtained with a variable diffusion co-
efficient.

6. Influence of nonlinear source terms

For this problem, a reference solution is obtained by solv-
ing, with a finite-difference method, the distribution function

Fc�c� = 
0

c

fc���d� . �78�

The reason for working with Fc, rather than the PDF fc
comes from the definition of boundary conditions at c=0 and
c=1. For the PDF, these are given by two Dirac peaks, while
for the distribution function, they are, respectively, given by
Fc�0�=0 and Fc�1�=1. Boundary conditions for Fc are easier

FIG. 7. Test 2: IEM model �=20, no source term S=0, �=0.1,
U0=0. �a� Stochastic fields at time t=10; �b� zoom-in the stochastic
fields in the vicinity of x=0.

FIG. 8. Test 2: IEM model �=20, no source term S=0, �=0.1,
U0=0. Statistical convergence: error ep against the number of sto-
chastic fields, N.

FIG. 9. Test 2: IEM model �=20, no source term S=0, �=0.1,
U0=0. Comparison of the moments computed with the EMC
method against the reference solution �FD-Mom.�. The reference
solution is computed from the moment equation �77� with a finite
difference �FD� method.
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to handle from a numerical point of view and allow one to
improve the accuracy of the calculation. The equation for Fc
is directly deduced from Eq. �65� by integrating it with re-
spect to c:

�Fc

�t
+ U0

�Fc

�x
=

�

�x
��

�Fc

�x
� − �M�Fc

�c
+ S

�Fc

�c
� . �79�

Moments are then directly commputed by the formula

�cp� = 1 − p
0

1

cp−1Fcdc . �80�

A first calculation is performed with the stiff nonlinear
source term defined by Eq. �68� and with the IEM micromix-
ing model. The profiles are shown in Fig. 13. As argued in
Sec. V, strong gradients are indeed observed. The mean val-
ues obtained by solving the PDF equation with a finite-
difference method and with the EMC method are shown in
Fig. 14. It is seen that the two methods yield different results.
For the EMC method, it is likely that the numerical diffusion

FIG. 10. Test 2: IEM model �=20, no source term S=0, �
=0.1, U0=1. Spatial convergence: error ep against the number of
cells, Nc.

FIG. 11. Test 3: IEM model �=20, no source term S=0, �
=0.1�1−14x2�1−x�2�, U0=0. Statistical convergence: error ep

against the number of stochastic fields, N.

FIG. 12. Test 3: IEM model �=20, no source term S=0, �
=0.1�1−14x2�1−x�2�, U0=0. Comparison of the moments com-
puted with the EMC method against the reference solution �FD-
Mom.�. The reference solution is computed from the moment equa-
tion �77� with a finite-difference �FD� method.

FIG. 13. Test 4: IEM model �=20, Arrhenius nonlinear source
term, �=0.1, U0=1. Stochastic fields at time t=10.
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of the gradients biases the solution. As for the finite-
difference solution of the PDF equation, it might altered by
the presence of Dirac peaks at boundaries. One of the diffi-
culties in solving the PDF equation �65� with a stiff source
term along with the IEM model is that the evolution of the
PDF in composition space is hyperbolic and also subject to
rapid variations that will enhance discrepancies along char-
acteristic paths in composition space. One can then expect
that the addition of a diffusion term in composition space
will attenuate this effect.

Indeed, if one uses the Langevin model instead of the
IEM model, then one obtains a good agreement between the
two methods. Thus, Fig. 15 shows some moments computed
with the Langevin model by both methods and Fig. 16 shows
that EMC method solution converges towards the solution
obtained with the finite-difference method.

7. Comparison with LMC methods

To allow comparison against traditional LMC methods,
SODE’s �33� with simplifications corresponding to Eq. �34�
are solved. The number of particles per cell is denoted Npc.
Particle means are computed by a simple first-order interpo-
lation formula

�Q�i =
1

Npc
�

particle �k��cell i

Q�c�k�� . �81�

A comparison is done in terms of computational effort and
precision. Precision is measured by the errors ep, while com-
putational effort is measured by the CPU time spent to
achieve convergence on a single 1.6-GHz processor.

A first comparison is made for the case U0=0, �=�0 and
with the IEM micromixing model. For this case, it is seen

�Fig. 17� that the computational effort required by the EMC
method to attain a given accuracy is greater than the one
required by the LMC method by at least an order of magni-
tude.

At the other extreme, if one now compares both methods
when U0=1 and �=�0 and with the IEM micromixing
model, then this tendency is inverted. It is seen �Fig. 18 that
both methods give similar results for the computation of the

FIG. 14. Test 4: IEM model �=20, Arrhenius nonlinear source
term, �=0.1, U0=1. Comparison of the moments computed with
the EMC method against the reference solution �FD-PDF�. The ref-
erence solution is computed from Eq. �79� with a finite-difference
�FD� method.

FIG. 15. Test 4: Langevin model �=20, d0=1, Arrhenius non-
linear source term, �=0.1, U0=1. Comparison of the moments
computed with the EMC method against the reference solution �FD-
PDF�. The reference solution is computed from Eq. �79� with a
finite-difference �FD� method.

FIG. 16. Test 4: Langevin model �=20, d0=1, Arrhenius non-
linear source term, �=0.1, U0=1. Statistical convergence: error ep

against the number of stochastic fields, N.
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mean, while the EMC method appears as at least an order of
magnitude faster for computing higher-order moments. The
main difference between these two extremes is that the sec-
ond case is more demanding in terms of spatial accuracy, as
the mean profiles possess stiffer gradients. This tends to in-
dicate that the LMC method is more accurate in terms of
statistical precision �as it is not as biased by numerical dif-
fusion�, while it is less accurate than the EMC method in
terms of spatial precision.

More interestingly, for the more realistic case U0=1, �
=�0, with the Langevin micromixing model and with the
nonlinear source term, it is observed that both methods attain
a given precision for an equivalent CPU time �Fig. 19�.

VII. DISCUSSION

So far, a new path allowing to derive SPDE’s for comput-
ing PDF equations has been proposed and illustrated on sev-
eral analytical and numerical examples. Another more re-
strictive path for deriving such SPDE’s was first proposed by
Valiño �3�. In addition, techniques other than EMC methods
are also currently used for computing PDF equations. Among
them, we can cite the LMC methods but also the finite-
volume/difference/element methods and some variants of
mesh-free Galerkin and finite-point-set methods. In this sec-
tion, we would like to address the question of the relative
merits and drawbacks of these different methods.

FIG. 17. Comparison EMC/LMC-IEM model �=20, no source
term S=0, �=0.1, U0=0. �a� Error e1; �b� error e4.

FIG. 18. Comparison EMC/LMC-IEM model �=20, no source
term S=0, �=0.1, U0=1. �a� Error e1; �b� error e2.
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A. Field Monte Carlo formulation

EMC methods have been extensively used in several do-
mains �for instance, see �19� for shallow water applications,
�20� for quantum mechanics, or �21� for applications of poly-
nomial chaos expansions�. However, their application to
simulations of turbulent reactive flows only seems to be dat-
ing back from Valiño’s recent work �3�, in which the method
is named the field Monte Carlo formulation.

In �3�, a connection is established between the PDF equa-
tion �9� with the IEM model and the parabolic SPDE’s �20�
with Ito interpretation. However, the path followed to obtain
this connection suffers from several limitations.

First, restrictive hypotheses are used. The connection be-
tween the PDF equation and the SPDE’s is explicitly limited
to smooth, twice differentiable in space stochastic fields. An
argument is given suggesting that this restriction is not im-
pairing and that discontinuities can be regarded as pathologi-
cal: a mapping is introduced to show that the stochastic fields
and the PDF have “similar grade of spatial smoothness.”
However, this last argument only holds if the mapped fields
are themselves smooth, which remains an hypothesis. As a
matter of fact, it has been shown in Sec. V that discontinui-
ties are on the contrary likely to appear due to the presence
of boundary conditions.

Another drawback of the path followed in �3� is that it
does not allow one to gain any insight into the obtained
equation: Equation �20� is erroneously interpreted in �3� as
an advection-diffusion-reaction equation. As shown in Sec.
III, it is in fact an advection-reaction equation. This consid-
eration is crucial for building numerical scheme. In this re-
gard, knowledge of the actual advection velocity, only appar-
ent in the Stratonovitch formulation �19�, is also crucial.

Thus, despite yielding correct equations �with Ito interpre-
tation�, the path followed by Valiño appears as constrained
by unnecessary hypothesis and without discussion of physi-
cal meaning.

B. About Lagrangian and Eulerian Monte Carlo methods

For the past 20 years, the LMC approach, under its finite-
point-set formulation proposed by Pope �2�, has been the
most popular method for solving PDF equations in the field
of turbulent combustion. Its efficiency and accuracy have
been proved on many different configurations �12�, from aca-
demic to industrial ones.

Compared to the EMC method proposed in this article,
LMC methods possess one main advantage: in a Lagrangian
framework, the information carried by particles is purely lo-
cal in physical space �if one excepts the computation of
means; see paragraph below�. There is no gradient to com-
pute and consequently no numerical error due to its discrete
approximation. As a result, discontinuities such as the ones
described in Sec. V do not exist. Similarly, stiff chemical
source terms, even if requiring careful numerical treatment,
do not impose length scale restrictions such as those encoun-
tered with EMC methods. As already detailed in Secs. V and
VI, these two points are the main limits of EMC methods
and cannot a priori be suppressed except by the use of so-
phisticated and probably expensive numerical techniques.

On the other hand, a few difficulties may be experienced
when using LMC methods. A first difficulty may arise from
the sampling error and its impact on the signification of the
computed means. For instance, let us consider a constant
density flow and let us examine what are the properties of the
mean density that would be computed with an LMC method.
In LMC methods, the mean density is computed by summing
the weights carried by the stochastic particles present in a
given cell of the computational domain, and by dividing this
sum by the cell volume. If the weights are uniform for all
particles, the computed mean density is proportional to the
number of particles present in a given cell. But because of

FIG. 19. Comparison EMC/LMC-Langevin model �=20, d0

=1, Arrhenius nonlinear source term, �=0.1, U0=1. �a� Error e1;
�b� error e2.
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the sampling error, the number of particles will vary in time
and also from one cell to another. In other words, the value
of the computed mean density will vary both in time and in
space. As a consequence, the physical property of constant
density will not be respected. Thus, this example points out
that, because of the sampling error, computed means in LMC
methods might lose some of their physical meaning.

Another point is that the sampling error may not always
be controlled with precision. Indeed, it depends on the dis-
tribution of stochastic particles in the physical domain, and
this distribution is in general not uniform: without correction,
the probability of finding a particle at a given location is
proportional to the mean density ���. As a result, the physical
domain will possess zones with a high number of particles
and a high accuracy as well as zones with a small number of
particles and a low accuracy.

To avoid those first two difficulties, one may introduce
correction algorithms �22�, but the influence of these algo-
rithms on the precision of the calculation, their influence on
convergence, and the possibility of applying them in a gen-
eral case are not yet completely assessed.

Another drawback of LMC methods stems from the ex-
traction of mean quantities from a set of particles. Whatever
the method chosen, computing a mean value at a given point
involves making weighted sums on particles located in a
small spatial surrounding of this point. Thus, the purely local
property of the Lagrangian method described in the para-
graph above is in practice lost due the numerical evaluation
of means. A first consequence is that the computation of
means is ambiguous as it does not simply yield an ensemble
average but also a spatial filtering of the computed mean.
For RANS calculations, this is obviously not impairing, but
when LMC methods are used in conjunction with a LES

solver �23�, this becomes problematic. In addition, if mean
values are introduced in the definition of the velocity of the
particles or in the source of the stochastic scalar, then nu-
merical diffusion will also be introduced alongside particle
trajectories in composition and physical space. Furthermore,
at boundary conditions, � functions cannot be treated in an
exact manner anymore.

Another difficulty may come from the fact that all par-
ticles must a priori evolve in physical space with the same
definition of velocity. On the other hand, accounting for ef-
fects such as near-wall molecular diffusion for species with
different Schmidt numbers may require different velocities to
be prescribed �24�.

A last drawback of LMC method is that to improve con-
vergence rates, it is often necessary to couple the LMC
method to a Eulerian RANS solver; this can quickly result in
a heavy tool to manipulate, due to the different nature
�Lagrangian-Eulerian� of the solvers. In addition, this cou-
pling introduces duplicate quantities �22� and requires a cor-
rection algorithm to eliminate redundancies. Besides, due to
the nonhomogeneous repartition of particles in the spatial
domain, particle means may present a noisy aspect, which, if
not smoothed, is harmful to the RANS solver.

Finally, both LMC and EMC methods share a common
default: the phenomenon of nonuniform particle distribution
described for LMC methods in physical space also exists in
composition space for both LMC and EMC methods. There

are domains in composition space where statistical accuracy
is poor due to a lack of stochastic realizations. These do-
mains obviously correspond to rare possible values of the
scalar field which might precisely be the ones of interest for
some practical applications �see the Introduction�. For in-
stance, if the PDF of a scalar c at a given point in space is
made of two Dirac peaks at c=0 and c=1 which combined
amplitude is 0.9, then with 100 particles or stochastic fields,
one will schematically only have 10 realizations to describe
the remaining of the PDF between 0 and 1. In the same way,
PDF’s with long tails are difficult to represent accurately
with LMC and EMC methods. This last defect is the price to
pay for exchanging the fixed discretization of composition
space offered by full Eulerian methods for the moving one of
Monte Carlo methods.

C. About full Eulerian methods, particle and mesh-free
methods

It is often argued that, for solving PDF equations, while
finite methods yield an exponential growth of the computa-
tional cost with the number of dimensions, Monte Carlo
methods only yield a linear growth. This last consideration,
however, is, in theory, only true for a fixed number of sto-
chastic particles or stochastic fields. If one rather focuses on
the the computational effort for a given accuracy, then one
can also obtain an exponential increase for Monte Carlo
method. To fix ideas, let us consider a LMC calculation on a
one-dimensional domain �0, 1� and on a two-dimensional
domain �0,1�� �0,1�, both with spatial accuracy �x=1/Nc.
There are consequently Nc cells in the one-dimensional do-
main and Nc

2 cells in the two-dimensional one. If we imagine
that the desired statistical accuracy is reached for a number
of particles per cell, Npc, then we see that a total number of
Np=NcNpc particles is required for the one-dimensional prob-
lem while a number Np=Nc

2Npc is required for the two-
dimensional problem. In d dimensions, Np=Nc

dNpc particles
would have been required.

In fact, the interest of Monte Carlo methods compared to
finite methods is that they offer a convenient, versatile way
of discretizing the physical and/or composition space. Thus,
in practical calculations of turbulent reactive flows, a great
number of compositions are considered, but the complete
joint PDF is not used as such. Instead, only marginal PDF’s
of a few �2–3� compositions are involved. In that case, in-
creasing the number of compositions does not increase the
number of dimensions of the marginal PDF’s which are prac-
tically solved. As a result, for practical problems in turbulent
reactive flows, a linear growth of the CPU effort is actually
obtained with Monte Carlo methods.

This would also be the case with finite methods if one
only solved the marginal PDF’s. Of course, such a procedure
would be too heavy to implement. But this shows that the
difficulty of finite methods does not come from their actual
computational cost, but rather from their lack of versatility
for discretizing composition spaces.

There exist generalizations of finite elements or volume
methods which offer this versatility by treating part or the
totality of the discretization in a Lagrangian or mesh-free
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way. More generally, these methods belong to the class of
particle and mesh-free methods �PMM’s� �15,25,26�, among
which one finds the finite-point-set, SPH or PUM methods
�15,25,26�. Such methods could be used as well to solve PDF
equations or equivalent stochastic SPDE’s. Thus, beyond the
traditional Monte Carlo methods, there exists a whole spec-
trum of particle and mesh-free methods that could be readily
applied or devised specifically to solve PDF equations.

As a conclusion, we would like to stress that all the men-
tioned methods aim at solving the same information. It is
most likely that a difficulty encountered by one method will
also be present in the other ones, even if under a different
form. The choice of a method rather than another will then
be a question of a compromise between the problems allevi-
ated by a given method and its inherent difficulties.

VIII. CONCLUSIONS

A path is proposed to derive SPDE’s allowing to compute
the modeled one-point Fokker-Planck PDF of turbulent reac-
tive scalars. A rapid decorrelating in time velocity field �Kra-
ichnan �4�, Kazantsev �5�� is used to model turbulent scalar
advection. The initial Kr-Ka model is modified to account for
the general case of compressible, inhomogeneous, low-
Mach-number turbulent reactive flows, with molecular diffu-
sion effects. The obtained SPDE’s are shown to be hyper-
bolic advection-reaction equations and are dealt with in a
generalized sense. They allow one to establish a connection
between Eulerian and Lagrangian Monte Carlo approaches
through the notion of stochastic characteristic.

The numerical integration of the SPDE’s is discussed and
a numerical scheme is adapted. Numerical tests are carried
out on simplified one-dimensional configurations. Orders of
accuracy and statistical convergence rates are checked and
found to be conform with the theoretical ones, except for a
symptomatic case which does not correspond to practical
calculations.

The EMC method is currently applied to the calculation
of a backward-facing step in combustion. Some results have
already been obtained �17� and compared against experimen-
tal data. A qualitatively good agreement was found between
mean temperatures and temperature variances. These prom-
ising results are now studied further and finer calculations
are being carried out.
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APPENDIX A: ELEMENTS OF PROOF

In this section, we first give the main steps leading to the
derivation of the PDF equation of the scalar field �, governed
by SPDE �14�. Then, by comparing this PDF equation to
PDF equation �9�, we obtain the constraint equations �15�
and �16�, which SPDE �14� must respect to be stochastically
equivalent to PDF equation �9�. Finally, as SPDE �19� satis-
fies those constraints, we deduce that SPDE �19� is stochas-
tically equivalent to PDF equation �9�.

For the sake of clarity, we introduce the following nota-
tions. First, we write the sum of the micromixing and chemi-
cal source terms present in SPDE �14� as a joint source term:

M��;x,t� + S��� = a���,x,t� + �2b���,x,t� Ẇ . �A1�

For the IEM model �Eq. �10��, we have

a� = − ��c��� − �̃� + S���, b� = 0, �A2�

and for the Langevin model �Eq. �11��,

a� = − a��c��� − �̃� + S���, b� = b��c���1 − �� . �A3�

We also introduce the temporal increment of the velocity:

dv = Ũdt + udt = Ũdt + uddt + ugdt . �A4�

With these notations, the material derivative of � can be
rewritten as

d� = a���,x,t�dt + �2b���,x,t� dW , �A5�

where the notation d� stands for the material derivative of �:

d� =
��

�t
dt + dv j �

��

�xj
. �A6�

The Stratonovitch interpretation is used for the stochastic
advection term and the Ito interpretation is used in the sto-
chastic source term. The Brownian processes Wj are chosen
independent from the Brownian process W used in the
Langevin model.

It will be assumed in the proof that dv is spatially Lips-
chitz. This assumption will be validated later by the final
expression of u �Eqs. �A20� and �A21��. Indeed, it will be
seen that u is determined by the turbulent diffusion coeffi-
cient �T, which is spatially Lipschitz.

Let us now introduce the fine-grained characteristic func-
tion of �:

����,x,t� = ei���x,t�. �A7�

By definition, the mean of �� is the characteristic function of
�, ��—that is to say, the Fourier transform f� of the PDF of
�:

����;x,t� = ������;x,t� = ei��f���;x,t�d� . �A8�

In the context of Eq. �A5�, the mean of an arbitrary function
depending of � is equivalently defined through the PDF of �
or by considering that the function is averaged over an infi-
nite number of realizations of the stochastic processes dv
and dW. As these processes are independent, we have

�� = �����W�v = �����v�W, �A9�

where �·�v ��·�W� denotes averaging over the realizations of v
�W�.
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By making use of the classical calculus rules for the Stra-
tonovitch advection term and of the Ito calculus rules for the
stochastic source term, one derives the following equation
for the material derivative of ���� ,x , t�:

d�� =
���

�t
dt + dv j �

���

�xj
=

���

��
d� +

1

2

�2��

��2 d�2 = ��� a�dt

+ i���
�2b� dW − �2��b�dt . �A10�

In the second line, the term 1
2b���2�� /��2�d�2 comes from

application of the Ito stochastic calculus �see �13��. In the
third line, Eq. �A5� was used to express d� and d�2. Only
terms of order dt were kept in the expression of d�2.

Then, by taking the mean of Eq. �A10�, one obtains an
equation for the characteristic function ��:

���

�t
dt + 		dv j �

���

�xj



v



W
= i���� a��dt − �2��� b��dt ,

�A11�

where the no-correlation property of the Ito product has been
used: ���

�2b� dW�W=0.
From this point on, there only remains to express the

mean value �dv j ���� /�xj�v. For this purpose, we shall make
use of the Ito transformation �B7�:

dv j �
���

�xj
= dv j

���

�xj
+

1

2
d� ���

�xj
�dv j

= dv j
���

�xj
−

�

�xj
�1

2
dv jdvk

���

�xk
� +

1

2
dvk

�dv j

�xj

���

�xk
.

�A12�

Taking the mean over the realization of v yields

	dv j �
���

�xj



v
= �dv j�

�����v

�xj
−

�

�xj
�1

2
�dv jdvk�

�����v

�xk
�

+
1

2
	dvk

�dv j

�xj

 �����v

�xk
, �A13�

where again the no-correlation property of the Ito product
has been used: �dv j ��� /�xj�= �dv j������v /�xj.

By inserting this expression into Eq. �A11�, the following
equation is obtained for ��:

���

�t
dt + ��dv j� +

1

2
	dv j

�dvk

�xk

� ���

�xj

=
�

�xj
�1

2
�dv jdvk�

���

�xk
� + i���� a��dt − �2�b����dt .

�A14�

Finally, by taking the inverse Fourier transform of Eq. �A14�,
the equation for the PDF of � is obtained:

�f�

�t
+ ��dv j� +

1

2
	dv j

�dvk

�xk

� �f�

�xj
=

�

�xj
�1

2
�dv jdvk�

�f�

�xk
�

−
�

��
�a���,x,t�f�� +

�2

��2 �b���,x,t�f�� . �A15�

For this equation to be identical to Eq. �9�, the following
constraints must be satisfied:

1

2
�dv jdvk� = �T� jkdt , �A16�

�dv j� +
1

2
	dv j

�dvk

�xk

 = Ũjdt −

1

���
����
�xj

�T dt . �A17�

By substituting the expression of dv �Eq. �A4�� into Eqs.
�A16� and �A17�, one obtains the following constraints on ug

and ud �Eqs. �15� and �16� in Sec. III�:

1

2
�ui

g�x,t�uj
g�x,t��dt = �T�ij , �A18�

uj
d = −

1

2
	 �ui

g

�xi
�x,t�uj

g�x,t�
dt −
1

���
����
�xj

�T. �A19�

In SPDE �19�, the following expressions for ug and ud are
taken:

uj
g = �2�TẆj , �A20�

uj
d = −

1

2

��T

�xj
−

1

���
����
�xj

�T. �A21�

This choice allows us to respect the constraints �A18� and
�A19�. Besides, the definitions of ud and ug in SPDE �19�
satisfy the Lipschitz continuity assumption on which the
proof exposed above is based. Indeed, they are only deter-
mined by the smooth turbulent coefficient �T. Thus, the PDF
derived from equation of SPDE �19� is identical to PDF
equation �9�.

In this proof, no assumption on the smoothness and the
differentiability of the stochastic scalar field has been made,
so that Eq. �19� has a generalized sense and, in particular, is
valid for discontinuous stochastic scalar fields.

APPENDIX B: ITO TRANSFORMATION

In Sec. III, Eq. �20� was said to be stochastically equiva-
lent to Eq. �19� with Stratonovitch interpretation. In this sec-
tion the correspondence between Ito and Stratonovitch inter-
pretation is precised.

The conversion between SODE’s with Stratonovitch inter-
pretation and SODE’s with Ito interpretation is well known
and documented �13�. This transformation can actually be
extended directly to SPDE’s. Let us for instance consider the
following advection equation:

�c

�t
+ �2�

�c

�x
� dW = 0, �B1�

where �=��x , t�. We recall that the symbol � in the stochas-
tic product denotes the Stratonovitch interpretation, while the
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absence of symbol in the stochastic product denotes the Ito
interpretation. We also recall that only the Stratonovitch in-
terpretation preserves the advection meaning of the stochas-
tic product. It is possible to recast this SPDE as an SODE at
an arbitrary point x0:

�dc�x0
�t� = − �2�� �c

�x
�

x0

� dW . �B2�

Despite its apparent simplicity, the transformation from Eq.
�B1� to Eq. �B2� involves nontrivial mathematical deriva-
tions �8�. From there, it is possible to apply the classical Ito
transformation �13�:

�dc�x0
�t� = − �2�� �c

�x
�

x0

dW�t�

+
1

2
�2�� �c

�x
�

x0

�

�c��2�� �c

�x
�

x0

�dt

= − �2�� �c

�x
�

x0

dW�t� +
1

2
�2�� �

�x
��2�

�c

�x
��

x0

dt .

�B3�

The passage from the first to the second line comes from the
equality

� �c

�x
�

x0

�

�c
= � �

�x
�

x0

. �B4�

The following SPDE with Ito interpretation is finally ob-
tained:

�c

�t
+ �2�

�c

�x
dW�t� =

1

2
�2�

�

�x
��2�

�c

�x
�dt . �B5�

This equation is stochastically equivalent to the Stratono-
vitch equation �B1�. By applying this transformation to Eq.
�19� with Stratonovitch interpretation, one readily obtains
Eq. �20� with Ito interpretation.

It is also possible to present the Ito transformation in a
different way. Indeed, for any function X of time, the infini-
tesimal increment X �dW can be approximated, by definition
of the Stratonovitch calculus, by

X � dW = X�t + dt/2��W�t + dt� − W�t��

= �X�t� +
1

2
dX��W�t + dt� − W�t�� . �B6�

From there, the following Ito Stratonovitch correspondence
is obtained:

X � dW = X dW +
1

2
dX dW . �B7�

This transformation is just another expression of the one pre-
sented at the beginning of this section. Indeed, by applying
transformation �B7� to Eq. �B2�, one obtains �after dropping
the notation ��x0 for clarity�

dc = − �2�
�c

�x
dW −

1

2
d��2�

�c

�x
�dW

= − �2�
�c

�x
dW −

1

2

�c

�x
d��2��dW −

1

2
�2�

�dc

�x
dW

= − �2�
�c

�x
dW −

1

2

�c

�x

d��2��
dt

dtdW

+
1

2
�2�

�

�x
��2�

�c

�x
�dW2. �B8�

By considering that dW is of order dt1/2 and by neglecting
the terms of order �dt, one recovers Eq. �B5�.

APPENDIX C: CONNECTION BETWEEN EULERIAN AND
LAGRANGIAN PDF’s

To explicit further the connection between Eulerian and
Lagrangian PDF’s, let us introduce, as in �12�, the Lagrang-
ian joint PDF of position and composition conditional on the
initial solution fL�� ,x ; t �
� and its fine-grained PDF:

fL���,x;t�
� = �„� − �+�t�
�…�„x − x+�t�
�… . �C1�

By definition,

fL��,x;t�
� = �fL���,x;t�
�� . �C2�

Similarly, let us introduce the Eulerian PDF of �,
fE�� ;x , t�, and its fine-grained PDF:

fE���;x,t� = �„� − ��x,t�… . �C3�

By definition,

fE��;x,t� = �fE���;x,t�� . �C4�

The Eulerian and Lagrangian fine-grained PDF are related
by

 j+fL���,x;t�
�d
 = fL�„�,x;t�
�x+�…dx+

= �„� − �+�x+,t�…��x − x+�dx+

= �„� − ��x,t�… = fE���;x,t� . �C5�

The first equality is due to the relation j+d
=dx+ and the
third one to the sifting property of � functions.

This first relation is essential for numerical applications,
as it shows that to recover Eulerian statistics from a set of
particles, the sums on the particle ensemble must be pon-
dered by the Jacobian. For instance, to compute the Eulerian
mean of � from a set of N particles, one has to use the
following formula:

�̃ �
�k=1

N
j�k�
+ ��k�

+

�k=1

N
j�k�
+

. �C6�
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As for the Eulerian and Lagrangian PDF’s, they are re-
lated by considering the following relation:

 fL���,x;t�
�d
 = 1

j+ fL���,x;t�
�j+d


= 1

j+�x+,t�
�„� − �+�x+,t�…��x − x+�dx+

�C7�

=
1

j�x,t�
�„� − ��x,t�… . �C8�

By taking the mean of the left- and right-hand sides of this
equation, one finally obtains

 fL��,x;t�
�d
 = 	 1

j
��
 fE��;x,t� . �C9�
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